Selasa, 08 November 2011

RISC dan CISC

Complex instruction-set computing atau Complex Instruction-Set Computer (CISC; "Kumpulan instruksi komputasi kompleks") adalah sebuah arsitektur dari set instruksi dimana setiap instruksi akan menjalankan beberapa operasi tingkat rendah, seperti pengambilan dari memory, operasi aritmetika, dan penyimpanan ke dalam memory, semuanya sekaligus hanya di dalam sebuah instruksi. Karakteristik CISC dapat dikatakan bertolak-belakang dengan RISC.
Sebelum proses RISC didesain untuk pertama kalinya, banyak arsitek komputer mencoba menjembatani celah semantik", yaitu bagaimana cara untuk membuat set-set instruksi untuk mempermudah pemrograman level tinggi dengan menyediakan instruksi "level tinggi" seperti pemanggilan procedure, proses pengulangan dan mode-mode pengalamatan kompleks sehingga struktur data dan akses array dapat dikombinasikan dengan sebuah instruksi. Karakteristik CISC yg "sarat informasi" ini memberikan keuntungan di mana ukuran program-program yang dihasilkan akan menjadi relatif lebih kecil, dan penggunaan memory akan semakin berkurang. Karena CISC inilah biaya pembuatan komputer pada saat itu (tahun 1960) menjadi jauh lebih hemat.
Memang setelah itu banyak desain yang memberikan hasil yang lebih baik dengan biaya yang lebih rendah, dan juga mengakibatkan pemrograman level tinggi menjadi lebih sederhana, tetapi pada kenyataannya tidaklah selalu demikian. Contohnya, arsitektur kompleks yang didesain dengan kurang baik (yang menggunakan kode-kode mikro untuk mengakses fungsi-fungsi hardware), akan berada pada situasi di mana akan lebih mudah untuk meningkatkan performansi dengan tidak menggunakan instruksi yang kompleks (seperti instruksi pemanggilan procedure), tetapi dengan menggunakan urutan instruksi yang sederhana.
Satu alasan mengenai hal ini adalah karena set-set instruksi level-tinggi, yang sering disandikan (untuk kode-kode yang kompleks), akan menjadi cukup sulit untuk diterjemahkan kembali dan dijalankan secara efektif dengan jumlah transistor yang terbatas. Oleh karena itu arsitektur -arsitektur ini memerlukan penanganan yang lebih terfokus pada desain prosesor. Pada saat itu di mana jumlah transistor cukup terbatas, mengakibatkan semakin sempitnya peluang ditemukannya cara-cara alternatif untuk optimisasi perkembangan prosesor. Oleh karena itulah, pemikiran untuk menggunakan desain RISC muncul pada pertengahan tahun 1970 (Pusat Penelitian Watson IBM 801 - IBMs)
Contoh-contoh prosesor CISC adalah System/360, VAX, PDP-11, varian Motorola 68000 , dan CPU AMD dan Intel x86.
Istilah RISC dan CISC saat ini kurang dikenal, setelah melihat perkembangan lebih lanjut dari desain dan implementasi baik CISC dan CISC. Implementasi CISC paralel untuk pertama kalinya, seperti 486 dari Intel, AMD, Cyrix, dan IBM telah mendukung setiap instruksi yang digunakan oleh prosesor-prosesor sebelumnya, meskipun efisiensi tertingginya hanya saat digunakan pada subset x86 yang sederhana (mirip dengan set instruksi RISC, tetapi tanpa batasan penyimpanan/pengambilan data dari RISC). Prosesor-prosesor modern x86 juga telah menyandikan dan membagi lebih banyak lagi instruksi-instruksi kompleks menjadi beberapa "operasi-mikro" internal yang lebih kecil sehingga dapat instruksi-instruksi tersebut dapat dilakukan secara paralel, sehingga mencapai performansi tinggi pada subset instruksi yang lebih besar.

RISC dan CISC

RISC
1.   Pengertian RICS
RICS singkatan dari Reduced Instruction Set Computer. Merupakan bagian dari arsitektur mikroprosessor, berbentuk kecil dan berfungsi untuk negeset istruksi dalam komunikasi diantara arsitektur yang lainnya.
2.   Karakteristik
arsitektur RISC memiliki beberapa karakteristik diantaranya :1.       Siklus mesin ditentukan oleh waktu yang digunakan untuk mengambil dua buah operand dari register, melakukan operasi ALU, dan menyimpan hasil operasinya kedalam register, dengan demikian instruksi mesin RISC tidak boleh lebih kompleks dan harus dapat mengeksekusi secepat mikroinstruksi pada mesin-mesin CISC. Dengan menggunakan instruksi sederhana atau instruksi satu siklus hanya dibutuhkan satu mikrokode atau tidak sama sekali, instruksi mesin dapat dihardwired. Instruksi seperti itu akan dieksekusi lebih cepat dibanding yang sejenis pada yang lain karena tidak perlu mengakses penyimapanan kontrol mikroprogram saat eksekusi instruksi berlangsung.
·         Operasi berbentuk dari register-ke register yang hanya terdiri dari operasi load dan store yang mengakses memori . Fitur rancangan ini menyederhanakan set instruksi sehingga menyederhanakan pula unit control. Keuntungan lainnya memungkinkan optimasi pemakaian register sehingga operand yang sering diakses akan tetap ada di penyimpan berkecepatan tinggi. Penekanan pada operasi register ke register merupakan hal yang unik bagi perancangan RISC.
·             Penggunaan mode pengalamatan sederhana, hampir sama dengan instruksi menggunakan pengalamatan register,. Beberapa mode tambahan seperti pergeseran dan pe-relatif dapat dimasukkan selain itu banyak mode kompleks dapat disintesis pada perangkat lunak dibanding yang sederhana, selain dapat menyederhanakan sel instruksi dan unit kontrol.
·         Penggunaan format-format instruksi sederhana, panjang instruksinya tetap dan disesuaikan dengan panjang word. Fitur ini memiliki beberapa kelebihan karena dengan menggunakan field yang tetap pendekodean opcode dan  pengaksesan operand register dapat dilakukan secara bersama-sama
  3. Ciri-ciri
1.   Instruksi berukuran tunggal
2.   Ukuran yang umum adalah 4 byte
3.   Jumlah pengalamatan data sedikit, biasanya kurang dari 5 buah.
4.   Tidak terdapat pengalamatan tak langsung yang mengharuskan melakukan sebuah akses memori agar memperoleh alamat operand lainnya dalam memori.
5.   Tidak terdapat operasi yang menggabungkan operasi load/store dengan operasi aritmatika, seperti penambahan ke memori dan penambahan dari memori.
6.   Tidak terdapat lebih dari satu operand beralamat memori per instruksi
7.   Tidak mendukung perataan sembarang bagi data untuk operasi load/ store.
8.   Jumlah maksimum pemakaian memori manajemen bagi suatu alamat data adalah sebuah instruksi .
9.   Jumlah bit bagi integer register spesifier sama dengan 5 atau lebih, artinya sedikitnya 32 buah register integer dapat direferensikan sekaligus secara eksplisit.
10. Jumlah bit floating point register spesifier sama dengan 4 atau lebih, artinya sedikitnya 16 register floating point dapat direferensikan sekaligus secara eksplisit.
CISC
1. Pengertian CISC
Complex instruction-set computing atau Complex Instruction-Set Computer (CISC) “Kumpulan instruksi komputasi kompleks”) adalah sebuah arsitektur dari set instruksi dimana setiap instruksi akan menjalankan beberapa operasi tingkat rendah, seperti pengambilan dari memory, operasi aritmetika, dan penyimpanan ke dalam memory, semuanya sekaligus hanya di dalam sebuah instruksi. Karakteristik CISC dapat dikatakan bertolak-belakang dengan RISC.
1.   Karakteristik
1.   Sarat informasi memberikan keuntungan di mana ukuran program-program yang dihasilkan akan menjadi relatif lebih kecil, dan penggunaan memory akan semakin berkurang. Karena CISC inilah biaya pembuatan komputer pada saat itu (tahun 1960) menjadi jauh lebih hemat
2.   Dimaksudkan untuk meminimumkan jumlah perintah yang diperlukan untuk mengerjakan pekerjaan yang diberikan. (Jumlah perintah sedikit tetapi rumit) Konsep CISC menjadikan mesin mudah untuk diprogram dalam bahasa rakitan
2.   Ciri-ciri
1.   Jumlah instruksi banyak
2.   Banyak terdapat perintah bahasa mesin
3.   Instruksi lebih kompleks

               

I.    CONTOH RISC dan CISC
1.   KELEBIHAN dan KEKURANGAN
Teknologi RISC relatif masih baru oleh karena itu tidak ada perdebatan dalam menggunakan RISC ataupun CISC, karena tekhnologi terus berkembang dan arsitektur berada dalam sebuah spektrum, bukannya berada dalam dua kategori yang jelas maka penilaian yang tegas akan sangat kecil kemungkinan untuk terjadi.
Kelebihan
1.   Berkaitan dengan penyederhanaan kompiler, dimana tugas pembuat kompiler untuk menghasilkan rangkaian instruksi mesin bagi semua pernyataan HLL. Instruksi mesin yang kompleks seringkali sulit digunakan karena kompiler harus menemukan kasus-kasus yang sesuai dengan konsepnya. Pekerjaan mengoptimalkan kode yang dihasilkan untuk meminimalkan ukuran kode, mengurangi hitungan eksekusi instruksi, dan meningkatkan pipelining jauh lebih mudah apabila menggunakan RISC dibanding menggunakan CISC.
2.   Arsitektur RISC yang mendasari PowerPC memiliki kecenderungan lebih menekankan pada referensi register dibanding referensi memori, dan referensi register memerlukan bit yang lebih sedikit sehingga memiliki akses eksekusi instruksi lebih cepat.
3.   Kecenderungan operasi register ke register akan lebih menyederhanakan set instruksi dan menyederhanakan unit kontrol serta pengoptimasian register akan menyebabkan operand-operand yang sering diakses akan tetap berada dipenyimpan berkecepatan tinggi.
4.   Penggunaan mode pengalamatan dan format instruksi yang lebih sederhana.
Kekurangan
        1.       Program yang dihasilkan dalam bahasa simbolik akan lebih panjang (instruksinya   lebih banyak).
2.   Program berukuran lebih besar sehingga membutuhkan memori yang lebih banyak, ini tentunya kurang menghemat sumber daya.
3.   Program yang berukuran lebih besar akan menyebabkan menurunnya kinerja, yaitu instruksi yang lebih banyak artinya akan lebih banyak byte-byte instruksi yang harus diambil.
4.   Pada lingkungan paging akan menyebabkan kemungkinan terjadinya page fault lebih besar.

hukum moore

Hukum Moore adalah salah satu hukum yang terkenal dalam industri mikroprosesor yang menjelaskan tingkat pertumbuhan kecepatan mikroprosesor. Diperkenalkan oleh Gordon E. Moore salah satu pendiri Intel. Ia mengatakan bahwa pertumbuhan kecepatan perhitungan mikroprosesor mengikuti rumusan eksponensial.
Perkembangan teknologi dewasa ini menjadikan HUKUM MOORE semakin tidak Relevan untuk meramalkan kecepatan mikroprossesor. Hukum Moore, yang menyatakan bahwa kompleksitas sebuah mikroprosesor akan meningkat dua kali lipat tiap 18 bulan sekali, sekarang semakin dekat kearah jenuh. Hal ini semakin nyata setelah Intel secara resmi memulai arsitektur prosesornya dengan code Nehalem. Prosesor ini akan mulai menerapkan teknik teknologi nano dalam pembuatan prosesor, sehingga tidak membutuhkan waktu selama 18 bulan untuk melihat peningkatan kompleksitas tapi akan lebih singkat
Akan tetapi, saat ini Hukum Moore telah dijadikan target dan tujuan yang ingin dicapai dalam pengembangan industri semikonduktor. Peneliti di industri prosesor berusaha mewujudkan Hukum Moore dalam pengembangan produknya. Industri material semikonduktor terus menyempurnakan produk material yang dibutuhkan prosesor, dan aplikasi komputer dan telekomunikasi berkembang pesat seiring dikeluarkannya prosesor yang memiliki kemampuan semakin tinggi.
Secara tidak langsung, Hukum Moore menjadi umpan balik (feedback) untuk mengendalikan laju peningkatan jumlah transistor pada keping IC. Hukum Moore telah mengendalikan semua orang untuk bersama-sama mengembangkan prosesor. Terlepas dari alasan-alasan tersebut, pemakaian transistor akan terus meningkat hingga ditemukannya teknologi yang lebih efektif dan efisien yang akan menggeser mekanisme kerja transistor sebagaimana yang dipakai saat ini.
Meskipun Gordon Moore bukanlah penemu transistor atau IC, gagasan yang dilontarkannya mengenai kecenderungan peningkatan pemakaian jumlah transistor pada IC telah memberikan sumbangan besar bagi kemajuan teknologi informasi. Tanpa jasa Moore mungkin kita belum bisa menikmati komputer berkecepatan 3GHz seperti saat in
Sebuah mikroprosesor (sering dituliskan: µP atau uP) adalah sebuah central processing unit (CPU) elektronik komputer yang terbuat dari transistor mini dan sirkuit lainnya di atas sebuah sirkuit terintegrasi semikonduktor.
Sebelum berkembangnya mikroprosesor, CPU elektronik terbuat dari sirkuit terintegrasi TTL terpisah; sebelumnya, transistor individual; sebelumnya lagi, dari tabung vakum. Bahkan telah ada desain untuk mesin komputer sederhana atas dasar bagian mekanik seperti gear, shaft, lever, Tinkertoy, dll.
Evolusi dari mikroprosesor telah diketahui mengikuti Hukum Moore yang merupakan peningkatan performa dari tahun ke tahun. Teori ini merumuskan bahwa daya penghitungan akan berlipat ganda setiap 18 bulan, sebuah proses yang benar terjadi sejak awal 1970-an; sebuah kejutan bagi orang-orang yang berhubungan. Dari awal sebagai driver dalam kalkulator, perkembangan kekuatan telah menuju ke dominasi mikroprosesor di berbagai jenis komputer; setiap sistem dari mainframe terbesar sampai ke komputer pegang terkecil sekarang menggunakan mikroprosesor sebagai pusatnya.

Karakteristik Mikroprosesor

Berikut adalah karakteristik penting dari mikroprosesor :
  1. Ukuran bus data internal (internal data bus size): Jumlah saluran yang terdapat dalam mikroprosesor yang menyatakan jumlah bit yang dapat ditransfer antar komponen di dalam mikroprosesor.
  2. Ukuran bus data eksternal (external data bus size): Jumlah saluran yang digunakan untuk transfer data antar komponen antara mikroprosesor dan komponen-komponen di luar mikroprosesor.
  3. Ukuran alamat memori (memory address size): Jumlah alamat memori yang dapat dialamati oleh mikroprosesor secara langsung.
  4. Kecepatan clock (clock speed): Rate atau kecepatan clock untuk menuntun kerja mikroprosesor.
  5. Fitur-fitur spesial (special features): Fitur khusus untuk mendukung aplikasi tertentu seperti fasilitas pemrosesan floating point, multimedia dan sebagainya.
Pengendali mikro (Inggris: microcontroller) adalah sistem mikroprosesor lengkap yang terkandung di dalam sebuah chip. Mikrokontroler berbeda dari mikroprosesor serba guna yang digunakan dalam sebuah PC, karena sebuah mikrokontroler umumnya telah berisi komponen pendukung sistem minimal mikroprosesor, yakni memori dan antarmuka I/O.

Kamis, 06 Oktober 2011

tugas aorkom3">

Minggu, 25 September 2011

nama : agus andi
alamat : kupang krajan 1 46b surabaya
nim : 11043101
fakultas : teknik
jurusan : informatika